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Stieltjes integral representation of effective diffusivities in time-dependent flows
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A Stieltjes integral representation for the effective diffusivity of a passive scalar in time-dependent, in-
compressible flows is developed. The representation provides a summability formula for the perturba-
tive expansion of the diffusivity in powers of the Péclet number. In particular, upper and lower bounds
on the effective diffusivity are obtained from Padé approximants of the series.

PACS number(s): 47.27.—i

Transport enhancement is the main characteristic
property of turbulent flows. It is well known that mass,
momentum, and energy transport rates in turbulent ve-
locity fields greatly exceed the corresponding molecular
rates. Macroscopically, advection-diffusion of a passive
scalar by an incompressible flow results in a large-scale
mixing motion characterized by an effective diffusitivity.
Microscopically, the dynamics of transport enhancement
are related to the interplay between advection and molec-
ular diffusion. There are few flows for which the effective
diffusivity can be calculated in closed form. In particu-
lar, the weak-coupling approximation becomes exact for
velocity fields having a correlation time much smaller
than the typical turnover and diffusive times. Perturba-
tive techniques are needed to treat the general case when
spatial and temporal velocity correlations are both
relevant, or temporal correlations are so long range that
the velocity can be viewed as nearly time independent. It
is a matter of importance to have rigorous expressions
and estimates for effective diffusivities in incompressible
flows, which apply beyond the perturbative situation of
small Péclet numbers. A Stieltjes integral representation
of the effective diffusivity for time-independent flows,
which provides a resummation procedure valid for all
Péclet numbers, was developed in [1] for this purpose.
Our aim here is to show that the latter representation can
be extended to the physically more interesting case of
time-dependent flows. The formula obtained here is valid
for all incompressible flows having homogeneous and sta-
tionary vector potentials with finite variance. As in [1],
upper and lower bounds for the effective diffusivity are
obtained using only a finite number of terms in the per-
turbative expansion of the Stieltjes integral. Another
consequence of the existence of a Stieltjes integral repre-
sentation is that flows that have a homogeneous and sta-
tionary vector potential with finite variance always give
rise to Fickian diffusive transport at large scales.

The equation for a passive scalar advected by an in-
compressible velocity field is

9,0+v-Vo=kV?0 . (1

Here v(x,?) is a random, homogeneous, and stationary
velocity field satisfying the incompressibility condition
V-v=0. (Note that a deterministic periodic flow can be
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handled similarly.) We study the transport in a frame
moving with the mean flow. In this coordinate system,
the average velocity (v) is zero. (Henceforth, brackets
will be used to denote ensemble averaging of statistical
quantities). Equation (1) depends on two nondimensional
parameters: the Péclet number Pe and the ratio S be-
tween the typical sweeping time and the typical correla-
tion time (a sort of Strouhal number), defined, respective-
ly, as

P and S=——5— . (2)

(A2
Here, the velocity correlation length is denoted by /, the
velocity correlation time is 7, and the vector potential A
has zero average value and satisfies VX A=v and the
gauge-condition V- A=0. We shall be interested in the
dynamics of (1) for time and space scales much greater
than the correlation time and correlation length of the
velocity field. An effective diffusion equation correspond-
ing to (1) can be derived using multiscale techniques
(homogenization) [2,3,6,7]. The effective diffusivity along
an arbitrary direction n is then given by

k,=k+{(v-n)(w-n)) , (3)

e <A2)1/2 12
K

where the vector field w(x,?) is the solution of the auxili-
ary equation

d,wH+(v-V)w—kViw=—v, 4)

having zero average value. Equation (3) expresses the
effective diffusivity as the average concentration flux
across a surface normal to n for a scalar having an aver-
age unit gradient in the direction n. The notations
w, =w-n and E=Vw, are introduced for convenience.
Let us now take the scalar product of (4) with n, multiply
by w,, and average. It follows from (3) that the effective
diffusivity can be expressed as

Kk, =k(1+(E?)). (5)

The homogeneity and stationarity of the velocity field
have been exploited to derive the latter formula. It is evi-
dent from (5) that large-scale transport is always
enhanced in the presence of random incompressible ve-
locity fields.
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An equation most suitable for perturbation theory can
be obtained by applying the operator (kV?)~!V to both
sides of (4). The result can be written as the integral
equation

(J+i Pe#H )E=PeF , (6)
where J is the identity, the vector field F is

F=—L v=2y(v-n), )
kPe

and the operator ¥ is

Hy=——[V7V,(0,0)+5,8,7 8] . (8)
Qur crucial remark now is that # is Hermitian when
operating on irrotational vector fields (like E and F). The
latter property was proved in [1] for the time-
independent case. It is worthwhile to point out that the
symmetry of the advective term in (8) follows from the in-
compressibility of the velocity field, i.e., the existence of a
vector potential. The Hermitian property for the second
term in (8) is due to the skew symmetry of the time-
derivative operator.

We can give more insight into the integral equation (6)
by passing to the nondimensional coordinates X; =x; /I,
=t /7, and vector potential B=( A42) 1”2 A. The force
F and the Hermitian operator # can be written in the
form

F=V 2V[(VXB)n] 9)
and

H,;=i{V *V,[(VXB)e]+55,3,7 e}, (10)

where S is defined in (2) and the tilde indicates that
derivatives are performed with respect to nondimensional
variables. It is clear from these equations that the force
and the operator appearing in (6) are independent of the
Péclet number. The dependence of the problem on the
parameter S occurs via (10).

To derive the Stieltjes representation for the effective
diffusivity, we first consider the case when the vector po-
tential A is uniformly bounded over all realizations and
perform at the same time a regularization of the un-
bounded operator SJ-IG,V_ZQ. This regularization could
consist, e.g., in replacing the Fourier multiplier of this
operator, w/(ik?), by o/[i(1+€’w?)(e*+k?)] where € is
a small number. We can then exploit the spectral repre-
sentation of the Green’s function of Hermitian operators
to express the solution to (6) as

- ($,|F)

E(x,1)=Pe [ 3(d M), (x,1) Pe ¢ (11)
The vector field ¢, is an eigenfunction having the eigen-
value A, the Dirac notation for the scalar product is used,
and &(dA) is the spectral density of the operator #.
From (5) and (11), it follows immediately that the field E
satisfies

2\ b2 o(dA)
(E*)=pe* [ P (12)
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where o(dA) is a probability measure since

[o@n=["Te@n (BB P=(BY)=1. 13
Because the integral in (12) involves a probability mea-
sure, we can remove the cutoff € as well as the assump-
tion of boundedness of the vector potential and pass to
the limit, as in [3]. We thus obtain the Stieltjes integral
representation

o(dA)
1+Pe?A?
The moments of the measure o are the coefficients c,(S)

of the perturbation series expansion in Pe for the integral
equation (6)

e

K
—=1+Pe? 14
. e f (14)

Ke
—=1+3 (—=1)" "I, (S)Pe" . (15)

n21

It follows from (10) that ¢,(S) is a polynomial of degree
2n —2 in S. Note that the perturbation is performed
around the Laplace operator, i.e., for Pe<<1 and
Pe/S <<1. The nondimensional parameter S is thus not
required to be small. As a consequence, it does not ap-
pear explicitly in (14), but it actually influences «,
through the spectrum of the operator #. A possible al-
ternative would be to expand around the free diffusion
operator 9, —kV?, i.e., for Pe << 1 with the ratio Pe/S of
order 1. However, it is important to note that such an
expansion does not lead to a Stieltjes integral representa-
tion. The reason for this is that the operator

i(§9,—V?)7'V,[(VXB),@] (16)

is not Hermitian.

The limiting cases of the new representation, when
S <<1 or § >>1, correspond, respectively, to the Stieltjes
formula for time-independent velocities [1,3] and to the
classical weak-coupling approximation. This is readily
seen by taking the appropriate limits in (10). To obtain
the limit for S >>1, note that the dominant contribution
in (10) is given by the time-derivative term. The relevant
limit (associated to a velocity field 8 correlated in time) is
7—0, V— 0, with ¥V 2r—const. Here, V is the rms ve-
locity. A straightforward asymptotic analysis of (14)
yields the well-known formula

K, =K+ fo“’R(o,t)dt , (17

where R (x,1) is the two-point velocity correlator.

An interesting consequence of the Stieltjes representa-
tion (14) is the fact that upper and lower bounds on the
eddy diffusivity can be obtained from a finite number of
terms in (15). Let us indeed denote by 2" and «!2" 1
the diagonal [n,n] and the nondiagonal [n,n —1] Padé
approximants, respectively. The following results follow
from the Stieltjes property (see, e.g., [4]): (a) The diago-
nal sequence increases monotonically in »; (b) The nondi-
agonal sequence decreases monotonically in n; (¢) The
Stieltjes function «, satisfies k(2" <k, <«{2" V. The se-
quences «2" "V and «>" will then provide convergent

upper and lower bounds on the effective diffusivity.
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Moreover, the differences «2" ~1—«?" provide bounds

on the error due to the finite order n. The latter property
turns out to be useful in practical computations of
effective diffusivites to estimate the convergence of the
resummation procedure [5]. One important special case
of the previous results is the upper bound provided by
first-order perturbation theory. From (6), it follows that
a sufficient condition for the existence of the effective
diffusivity is
_ r Abk,0)*) _ 1 rR(x,0)

(Az)—f—T—dskdw—Ede3x< .

(18)

Here, 7(k,») is the Fourier transform of the velocity. A

homogeneous and stationary time-dependent velocity
field such that its vector potential has a finite variance
thus leads to a large-scale scalar transport, which is a
standard diffusion process. We conclude noting that the
Stieltjes integral representation for time-independent ve-
locities derived here could be used for obtaining rigorous
estimates of diffusivites in cases where both the Péclet
and the Strouhal numbers defined in (2) are finite.
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